Apolipoprotein A-I (ApoA-I) mimetic peptide P2a by restoring cholesterol esterification unmasks ApoA-I anti-inflammatory endogenous activity in vivo.
نویسندگان
چکیده
The acute-phase protein haptoglobin (Hpt) binds apolipoprotein A-I (ApoA-I) and impairs its action on lecithin-cholesterol acyltransferase, an enzyme that plays a key role in reverse cholesterol transport. We have previously shown that an ApoA-I mimetic peptide, P2a, displaces Hpt from ApoA-I, restoring the enzyme activity in vitro. The aim of this study was to evaluate whether P2a displaces Hpt from ApoA-I in vivo and whether this event leads to anti-inflammatory activity. Mice received subplantar injections of carrageenan. Paw volume was measured before the injection and 2, 4, 6, 24, 48, 72, and 96 h thereafter. At the same time points, concentrations of HDL cholesterol (C) and cholesterol esters (CEs) were measured by high-performance liquid chromatography, and Hpt and ApoA-I plasma levels were evaluated by enzyme-linked immunosorbent assay. Western blotting analysis for nitric-oxide synthase and cyclooxygenase (COX) isoforms was also performed on paw homogenates. CEs significantly decreased in carrageenan-treated mice during edema development and negatively correlated with the Hpt/ApoA-I ratio. P2a administration significantly restored the CE/C ratio. In addition, P2a displayed an anti-inflammatory effect on the late phase of edema with a significant reduction in COX2 expression coupled to an inhibition of prostaglandin E(2) synthesis, implying that, in the presence of P2a, CE/C ratio rescue and edema inhibition were strictly related. In conclusion, the P2a effect is due to its binding to Hpt with consequent displacement of ApoA-I that exerts anti-inflammatory activity. Therefore, it is feasible to design drugs that, by enhancing the physiological endogenous protective role of ApoA-I, may be useful in inflammation-based diseases.
منابع مشابه
Assignment of the binding site for haptoglobin on apolipoprotein A-I.
Haptoglobin (Hpt) was previously found to bind the high density lipoprotein (HDL) apolipoprotein A-I (ApoA-I) and able to inhibit the ApoA-I-dependent activity of the enzyme lecithin:cholesterol acyltransferase (LCAT), which plays a major role in the reverse cholesterol transport. The ApoA-I structure was analyzed to detect the site bound by Hpt. ApoA-I was treated by cyanogen bromide or hydrox...
متن کاملImpaired Reverse Cholesterol Transport and Increased Inflammation Increased Atherosclerosis in Mice Lacking Apolipoprotein A-I Attributable to Both
To test the hypothesis that apolipoprotein A-I (apoA-I) functions specifically to inhibit atherosclerosis independent of the level of high-density lipoprotein cholesterol (HDL-C) by promoting both reverse cholesterol transport and HDL antiinflammatory function in vivo, we established a murine atherosclerosis model of apoA-I deficiency in which the level of HDL-C is well maintained. ApoA-I / mic...
متن کاملABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages.
OBJECTIVE We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. A...
متن کاملIncreased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation.
To test the hypothesis that apolipoprotein A-I (apoA-I) functions specifically to inhibit atherosclerosis independent of the level of high-density lipoprotein cholesterol (HDL-C) by promoting both reverse cholesterol transport and HDL antiinflammatory function in vivo, we established a murine atherosclerosis model of apoA-I deficiency in which the level of HDL-C is well maintained. ApoA-I-/- mi...
متن کاملAnti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I.
4F is an anti-inflammatory, apolipoprotein A-I (apoA-I)-mimetic peptide that is active in vivo at nanomolar concentrations in the presence of a large molar excess of apoA-I. Physiologic concentrations ( approximately 35 microM) of human apoA-I did not inhibit the production of LDL-induced monocyte chemotactic activity by human aortic endothelial cell cultures, but adding nanomolar concentration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 340 3 شماره
صفحات -
تاریخ انتشار 2012